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FINITE ELEMENT MODELING OF A CIRCULAR RING 
USING HALF AND QUARTER, SYMMETRY 

William L. Cook 
Goddard Space Flight Center 

ABSTRACT 

The dynamic mode shapes and frequencies of a circular ring 
a r e  obtained using finite element techniques. The results obtained 
f rom models making use of half symmetry and of quarter symmetry 
are compared with those for the complete ring and with the exact 
solution. 

The half-ring model provides the same solution as the complete 
ring. The quarter-ring model, however, must be subjected to two 
separate sets  of boundary conditions in order  to obtain the complete 
se t  of mode shapes. 

This same quarter-ring model is then subjected to a third se t  
of boundary conditions to obtain the same solution as an infinitely 
long "corrugated" wire. 
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FINITE ELEMENT MODELING OF A CIRCULAR RING , 

USING HALF AND QUARTER SYMMETRY 

bY 

William L. Cook 

1. INTRODUCTION 

In the finite element modeling of symmetric structures,  a saving in com- 
puter time can often be obtained by determining the response of a segment of 
the structure constrained by appropriate boundary conditions. 

A class  of such structures is characterized by radial symmetry (e.g., cylin- 
drical  shells, spherical shells, circular disks and circular rings.) The present 
investigation demonstrates a method of approach in applying symmetry-oriented 
modeling techniques to structures possessing radial symmetry. 

Computations were performed on the IBM 7094 computer using the Martin 
Company SB038 program for the analysis of finite element models by the force 
method." * 

2. ANALYTICAL SOLUTION 

The in-plane vibrations of a circular ring a r e  discussed by Timoshemko in 
Vibration Problems in Engineering, p. 425 ff.3 

The frequency of pure radial vibration is: 

p = J" 
Y r2 

All  displacements are in the radial direction, and hence the motion is de- 
scribed by a circle of periodically varying radius. 
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The frequencies for  longitudinal (circumferential) vibrations are given by 

where i denotes the number of wave lengths to the circumference. All  displace- 
ments in this case a r e  in the circumferential direction. The modal frequencies 
for flexural vibrations are:  

where the mode shapes a r e  described by: 

u, = ai cos i+ = radial displacement 

vi = a, /i sin i+= circumferential displacement in which 
a, is a constant coefficient. 

I = area  moment of inertia of c ross  section 

g = acceleration of gravity 

E = Young's modulus 

r = radius of the ring 

y = specific weight of the ring 

A = cross  sectional a rea  

3 .  PARAMETER VALUES 

The following values of the parameters were chosen for present investiga- 
tions: 

r = 10.0 in. 

E = 1.0 x 10 lb/in. 
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g = 386.06 in./sec2 

A = 0.19634954in.* 

y = 25.9382231 lb/in.3 

I = 0.0654498467 in! 

The values for the last three parameters were chosen so as to provide conven- 
ient values for the grid point masses  and element compliances in the model. 

4. SYMMETRY METHODS 

The f i rs t  finite element model to be investigated is a representation of the 
complete ring, and from this model the entire set  of radial, flexural and circum- 
ferential mode shapes and associated frequencies are obtained. 

I t  will be demonstrated in this report that the same information may be ob- 
tained by modeling only a portion of the structure,  constrained by appropriate 
boundary conditions, which results in an appreciable savings in computer time. 

The boundary conditions on the segment a r e  chosen so as to be compatible 
with the deflections experienced by the complete structure in each mode shape 
desired. Hence, any modes whose deflections are not compatible with a given 
set of boundary conditions cannot be obtained from that set. It is obvious from 
the statements above that symmetry methods are applicable only in cases where 
the nature of the mode shapes has been predetermined. 

Consider the two representative mode shapes of the ring shown in Figure 1. 
These are the flexural modes with i equal to 3 and 4 respectively. The radial 
displacements, u i  , a r e  indicated by a solid line, and the circumferential displace- 
ments v i ,  by a broken line. 

Assuming the half-symmetry model to lie in the region0 I (c 5 n-, it  is necessary 
to  prescr ibe the boundary conditions at 4 = 0 and at q5 = 7 7 .  Refering to the modes 
shown in Figure 1 it will be noticed that the slope (du/d&) and the circumferential 
displacement (v) are zero at both points. It can be shown that this condition is 
also t rue  for the circumferential modes. Hence, the half-symmetry model con- 
strained such that these boundary conditions are satisfied may be expected to 
produce the entire set of mode shapes. 
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Figure l-Third and Fourth Flexural Mode Shapes 
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In the case of a quarter-symmetry model in the regionO%zn/2, boundary 
conditions must be determined at 4 = 0 and at  4 =n/2.  A s  seen in Figure 1 the 
third flexural mode satisfies the condition that the slope (du/dd) and the circum- 
ferential displacement (v) are zero at + = 0, and the radial displacement (u) is 
zero at g5 = n/2. This set of boundary conditions will produce all the odd-numbered 
flexural and circumferential modes. 

The fourth flexural mode (as well as all the remaining modes) may be ob- 
tained by constraining the slope and the circumferential displacement to he zero 
at both ends. 

Great care  should be taken that all components of displacement are investi- 
gated in the determination of the boundary conditions. For instance, from the 
fact that the radial displacement at q5 = n / 2  is identically zero for the odd num- 
bered modes, it might mistakenly be infered that a node exists at that point (i.e., 
that both u and v are zero.) 

It will be shown that the same quarter-symmetry model discussed above, 
when constrained in just such a manner so that du/d& and v a re  zero at $= 0, 
and both u and v a r e  zero  at  = n / 2 ,  will no longer represent a circular ring. 
The mode shapes in this case will be those of a structure formed by an anti- 
symmetric extension of the segment about 6 = n / 2 .  

5. FINITE ELEMENT MODELS COMPLETE RING 

The model for the complete ring consists of 32 grid points equally spaced 
about a circle  of radius 10.0 inches, connected by 32 primary tension elements 
and 64 two-digit bending elements, 6 1  of which are primary (Figure 2). 

The structure is supported by 3 reaction elements which are later removed 
for  free-body analysis. 

The values for the element compliances and grid point masses  a r e  shown 
in Table I. 

Half Symmetry 

The half-symmetry model consists of 17 grid points evenly spaced about a 
semi-circular a r c  of radius 10.0 inches, connected by 1 6  primary tension ele- 
ments and 32 primary 2-digit bending elements (Figure 3) .  
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Table I 
Compliance and Mass Data for Complete Ring 

Element Numbers 

1-32 

33-96 

DIAGONAL COMPLIANCE 

Formula Value 

c =  L/AE 1.0 x l o +  
C = L/3EI 1.0 x 1 0 - 6  

Element Numbers 

33 to 34, 35 to 36, 
. . . 95 to 96 

1 
Formula Value 

C = L/6EI 0.5 X l o q 6  

Grid Points 

1-32 

7 

i 

M a s s  

10. o/g 
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Axial reactions 49 and 52 prevent circumferential motion at the ends of the 
ring, and moment reactions 51 and 53 prevent rotational motion at these points. 
Axial reaction 50 is necessary only for stability and is removed prior to deter- 
mination of the mode shapes. 

Element Numbers 

1-16 

17-48 

The compliance and mass  values for this case are shown in Table 11. The 
reactions in all of the models have zero compliances. 

Formula Value 

c = L/AE 

C = L/3 E1 

1.0 x 10-6 

1.0 x 10 - 6  

Table I1 
Compliance and Mass Data for Half Symmetry 

and for S-Shaped Curve 

Element Numbers 

17 to 18, 19 to 20, 
. . . 47 to 48 

Formula Value 

C = L/6EI 0.5 X 

MASS 

Grid Points 

5.0/g 

lO.O/g 

Quarter Symmetry (Even Modes) 
~ - ~ -  . 

The circular ring is represented in this case by a quarter segment. 

In order  to  obtain the radial mode and the even numbered flexural and cir-  
cumferential modes, the ends of the segment are constrained such that rotation 
and Circumferential translation are zero. 
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The model (Figure 4) consists of 9 grid points and 28 elements including 8 
tension, 16 bending, and 4 reaction elements (3 of which are primary). 

Element Numbers 

9 to 10, 11 to 12, 
-- - 

. . . 23 to 24 

The compliance and mass  values for this case are shown in Table III. 

1 

Formula Value 

C = L/6EI 0.5 X 

Table I11 
Compliance and Mass Data for Quarter Symmetry 

DIAGONAL COMPLIANCE 

I Element Numbers I Formula 1 Value ~ 1 
\- +--- I- I 
I I c =  L/AE 1 L O X  i o +  I 1-8 

I 
I 4 

9-24 I C =  L/3EI I 1 . O X  1 I 

MASS 

Grid Points 

5. o/g 

2-8 10. o/g 
_. ___ _--_ __ 

Quarter Symmetry (Odd Modes) 

The same quarter segment used to obtain the even modes is now subjected 
to a different set of boundary conditions to obtain the odd numbered modes (Figure 
5) * 

One end of the segment is constrained as before, while a t  the other end an 
axial reaction (element 28) prevents motion in the radial direction. Reaction 
element 27 is necessary only for static stability and is removed prior to deter- 
mination of the mode shapes. Mass and compliance values a r e  the same as i n  
Table 111. 
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Quarter Symmetry with Boundary Conditions to Simulate S-Shaped Curve 

The model for this structure is identical to  that shown in F i g u e  5, except 
that reaction element 27 is not removed prior to determination of the mode shapes. 
In other words, all translational motion i s  arrested at  grid point 9. 

- - - ____ -_-- 

The mode shapes obtained using this set of boundary conditions a r e  those of 
a structure formed by an antisymmetric extension of thc quarter segment, i.e., 
of the s-shaped curve dcscribccl in the I'ollowing section. 

Mass and compliance values a r e  the same as those in Table 111. 

S-Shaped Curve __~-- 

This model is the same as the half-symmetry model except that the last 
eight grid points a r e  shifted so as to lorm an S-shaped curve (Figure 6). M a s s  
and compliance values a r e  the same as those in Table 11. 

The purpose of this exercise is to provide a comparison for the  mode shapes 
obtained in the preceding quarter s y m m e t r y  mode. The extension of that model 
into an antisymmetric geometry results i n  the curve considered here. 

I t  should be  noted that mode shapes obtained in this analysis also describe 
the motion of the fibare obtained by extending the curve infinitely in either direc- 
tion in a symmetrical manner. Such a figure may be described as a ''corrugated" 
wire. 

6 .  COMPARISON O F  RESULTS 

The values of the modal frequencies obtained from both the exact and the 
finite element solutions are compared in Table IV. 

The half-symmetry and quarter-syminetry inodels are seen to yield the same 
results as the full c i rc le  model. 

The. diffcwmccbs between tlw finito element resul ts  and the exact results for  
the c*ircular ring may bc accounted for b y  the coarseness of the partition in  the 
models. 
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